One of the big advantages of cloud computing is its utility computing model. Customers can use as much compute power or as little as they want without paying for what they do not need. Normally, most data centers have to be built for peak demand, with the servers unused when they are not needed.
Utility computing is based on the electric utility model. While this comparison has a lot of merit, there is one particular part of the analogy that really does not work.
Data are not electrons.
If someone steals some of your electric power by diverting it, you can get replacement power. If one part of the country's electric demand exceeds its generating ability, it can get power from another part of the grid. One electron is as good as another.
Data has identity, latency, and relationships to other pieces of data.
If someone steals your data, another piece of data cannot take its place. if your data is stolen, or even delayed it, can aversely affect you. Depending on your resolution of the CAP Theorem dilemma, your replication strategy might leave you with a window of vulnerability for data loss.
Curiously, the argument has been made that the utlity computing model makes denial of service attacks unfeasible because the economics of trying to get enough bot driven computers to assualt a hugh data center is prohibitive. Sooner or later, somebody is going to try to get the servers of one data center to attack the servers of another data center. Hopefully, the software that monitors the transactions would realize that somebody is exceeding their credit limit.